

Product Data Sheet

E 'Manual metal-arc welding'

EWAC ST 202 NT

Prepared by	Qualified by	Approved by	Reg no	Cancelling	Reg date	Page
David P	Siva P	Umesh M	EN007139	EN005981	2023-06-26	1(2)

GENERAL

EWAC ST 202 NT is nickel-chromium-iron superalloy, for welding of similar alloys and dissimilar and complicated steel joining and cladding. Clad side of joints on steel clad with nickel-chromium-iron alloy, and for surfacing steel with nickel-chromium-iron weld metal. The electrode may be used for applications at temperatures ranging from cryogenic to about 480°C. Typical specifications for the nickel-chromium-iron base metal are ASTM B163, B166, B167, and B168, all of which have UNS Number N06600. These electrodes can also be used for welding steel to other nickel-base alloys..

Min AC OCV: NA Alloy Type: Ni based Super-alloy

Polarity: DC+ Coating Type: Basic

WELDING POSITIONS

CLASSIFICATIONS Electrode

APPROVALS

SFA/AWS A5.11: ENiCrFe-3

EN ISO 14172 : E Ni 6182 (NiCr15Fe6Mn)

CHEMICAL COMPOSITION

All Weld Metal (%)

	Min	Max	Nom
C Si Mn P S Cr Nb Fe Ti Ni	5.0 13 1 59 min	0.10 1.0 9.5 0.030 0.015 17 2.5 10.0 1.0	

EWAC ST 202 NT

Prepared by	Qualified by	Approved by	Reg no	Cancelling	Reg date	Page
David P	Siva P	Umesh M	EN007139	EN005981	2023-06-26	2(2)

MECHANICAL PROPERTIES OF WELD METAL

	ISO		AWS	
Properties	As welded Min	Тур	As welded Min	d Typ
Rp0.2 (MPa) Rm (MPa) A4 (%) A5 (%) Z (%) Charpy V at 20°C (J) Charpy V at -196°C (J)	360 550 27	390 620 40	550 30	390 620 43

Comments:

Interpass temperature < 150 °C

ECONOMICS & CURRENT DATA

Dimension (mm)	Current (A)		W	η	N	В	Н	Т	U	Welding Positions
Ø x Length	Min	Max								
2.5 x 350	50	80								
3.15 x 350	70	100								
4.0 x 350	90	130								

W = Weight (kg / 100 electrodes)

η = Efficiency (g weld metal x 100 / g core wire)

N = Effective value (kg weld metal / kg electrodes)B = Changes (number of electrodes / kg weld metal)

H = Deposit rate at 90% of max current (kg weld metal / hour arc time)

T = Fusion time at 90% of max current (s / electrode

U = Arc voltage (V)

OTHER DATA

The mechanical properties are highly depending on the grain size of the weld metal microstructure. Welding parameters resulting in coarse-grained structure can lead to considerably reduced ductility.

Redrying: 280°C, 2h.