7.3. Прутки сплошного сечения для дуговой сварки в защитных газах неплавящимся электродом на основе медных сплавов.

Классификации проволок в соответствии со стандартом:

• ISO 24373:2008, а также аналогичный ему EN 14640:2004

Классификацию см. в разделе 7.2. «Проволоки сплошного сечения для дуговой сварки в защитных газах плавящимся электродом на основе медных сплавов» на стр. XX

• SFA/AWS A5.7/A5.7M:2007

Классификацию см. в разделе 7.2. «Проволоки сплошного сечения для дуговой сварки в защитных газах плавящимся электродом на основе медных сплавов» на стр. XX

Марка, описание	Классификации и одобрения	Химический состав	Типичные механические свойства наплавленного
		прутка, %	металла
ОК Tigrod 19.12 Низколегированный медный пруток, предназначенный для сварки чистой меди и безкислородных низколегированных медных сплавов, когда основными требованиями к наплавленному металлу являются его высокая электропроводность и теплопроводность. Незначительное легирование сплава оловом повышает жидкотекучесть сварочной ванны. При сварке крупных изделий и больших толщин рекомендуется выполнять предварительный подогрев стыка до 300°С. Использование в качестве защитного газа гелия или аргон-гелиевой смеси вместо чистого аргона позволяет увеличить глубину проплавления, повысить скорость сварки и снизить температуру предварительного подогрева. Выпускаемые диаметры: 2,0 и 2,4 мм	EN ISO 24373: S Cu 1898 (CuSn1) AWS A5.7: ERCu	Cu min 98,0 Sn 0,50-1,00 Mn 0,10-0,50 Si 0,10-0,50	σ _т 75 МПа σ _в 220 МПа δ 30% твердость 75 НВ
ОК Tigrod 19.20 Пруток на основе оловянистой бронзы, предназначенный для сварки и ремонта бронз с высоким содержанием олова и их сварки с низкоуглеродистыми сталями, сварки чистой меди и безкислородных низколегированных медных сплавов, а также наплавки антифрикционных покрытий на стальные и чугунные поверхности. При сварке со сталью доля участия железа в наплавленном металле должна быть минимальной. Сварку крупных изделий и больших толщин рекомендуется выполнять с предварительным подогревом стыка до 300°С. Использование в качестве защитного газа гелия или артонгелиевой смеси вместо чистого артона позволяет увеличить глубину проплавления, повысить скорость сварки и снизить температуру предварительного подогрева. Выпускаемые диаметры: 2,0 и 2,4 мм	EN ISO 24373: S Cu 5180A (CuSn6P)	Си основа Sn 5,5-7,0 P 0,10-0,40	σ _т 150 ΜΠα σ _в 300 ΜΠα δ 20%
ОК Tigrod 19.30 Пруток на основе кремниевой бронзы, предназначенный для сварки разнообразных сплавов на основе меди, таких как низколегированные медные сплавы, латуни с невысоким содержанием цинка, кремниевые, никель-серебрянные и некоторые другие типы бронз, а также для наплавки антифрикционных покрытий на стальные и чугунные поверхности. Сварку крупных изделий и больших толщин рекомендуется выполнять с предварительным подогревом стыка до 300°С. Использование в качестве защитного газа гелия или аргон-гелиевой смеси вместо чистого аргона позволяет увеличить глубину проплавления, повысить скорость сварки и снизить температуру предварительного подогрева. Выпускаемые диаметры: 2,0 и 3,2 мм	EN ISO 24373: S Cu 6560 (CuSi3Mn1) AWS A5.7: ERCuSi-A	Си основа Si 2,80-4,00 Mn 0,75-1,50	σ _τ 130 ΜΠα σ _в 350 ΜΠα δ 40%
OK Tigrod 19.40 Пруток на основе алюминиевой бронзы, предназначенный для сварки некоторых марок алюминиевых бронз и наплавки на нелегированные и низколегированные стали антикоррозионных слоев, стойких к воздействию морской воды и кислот. Основными областями ее применения является производство оборудования для химической промышленности, опреснительных установок и судостроение. Выпускаемые диаметры: 2,0 и 3,2 мм	EN ISO 24373: S Cu 6100 (CuAl8) AWS A5.7: ERCuAl-A1	Си основа Al 7,0-8,5	$σ_{\scriptscriptstyle T}$ 175 ΜΠα $σ_{\scriptscriptstyle B}$ 420 ΜΠα $δ$ 40%

Марка, описание	Классификации	Химический	Типичные механические
	и одобрения	состав	свойства наплавленного
		прутка, %	металла
ОК Tigrod 19.49 Пруток на основе медно-никелевого сплава, предназначенный для сварки медных сплавов с содержанием никеля от 10 до 30%, сварки этих сплавов с монелевыми сплавами и наплавки переходных слоев на кромки при сварке некоторых комбинаций разнородных материалов. Наплавленный металл обладает высокой коррозионной стойкостью в морской воде и достаточно высокими прочностными свойствами. Основными областями его применения является производство опреснительных установок и офшорных конструкций. Выпускаемые диаметры: от 1,6 до 2,4 мм	EN ISO 24373: S Cu 7158 (CuNi30Mn1FeTi) AWS A5.7: ERCuNi	Cu основа Ni 30,0-32,0 Mn 0,50-1,50 Fe 0,40-0,75 Ti 0,20-0,50	$σ_{\tau}$ 180 ΜΠα $σ_{в}$ 350 ΜΠα $δ$ 40%

8. Сварочные материалы для сварки чугуна.

Классификация сварочного материала в соответствии со стандартом:

• ISO 1071:2003, а также идентичные ему EN ISO 1071

ISO 1071	: 1	С	2	3	4
				факул	ьтативно

ISO 1071 - стандарт, согласно которому производиться классификация

1 – индекс, определяющий тип сварочного материала

Индекс	Тип сварочного материала	
E	Электрод покрытый	
R	Пруток для автогенной сварки	
S	Проволока или пруток сплошного сечения для дуговой сварки в защитном газе	
Т	Проволока порошковая	

- С индекс, указывающий на то, что сварочный материал предназначен для сварки чугуна
- **2** группа индексов, определяющих химический состав наплавленного металла согласно таб. 2 или 3 стандарта ISO 1071.

Индекс	Тип сплава наплавленного металла
Fe	На основе низколегированной стали
FeC	На основе чугуна
Ni	Сплав близок к чистому никелю. Легирующих элементов в значимом количестве не присутствует
NiFe	На основе железно-никелевого сплава
NiFeMn	На основе железно-никелевого сплава дополнительно легированного марганцем
NiCu	На основе никель-медного сплава
CuSn	На основе оловянистой бронзы
CuAl	На основе алюминиевой бронзы
CuMnNiAl	На основе безоловянистой бронзы легированной марганцем, алюминием и никелем

3 – индекс, определяющий состав защитного газа для порошковой проволоки

C – 100% CO₂

М – аргоновая смесь

N – самозащитная

4 – индекс, определяющий коэффициент наплавки электрода (отношение веса наплавленного металла к весу израсходованного стержня), род и полярность применяемого тока согласно таб.4 стандарта ISO 1071

Индекс	Коэффициент наплавки Кс, %	Род тока и полярность
1	K _c ≤105	переменный, постоянный - обратная (+)
2		постоянный
3	105 <k<sub>c≤125</k<sub>	переменный, постоянный - обратная (+)
4		постоянный
5	125 <k<sub>c≤160</k<sub>	переменный, постоянный - обратная (+)
6		постоянный
7	K _c >160	переменный, постоянный - обратная (+)
8		постоянный